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A numerical model is presented that permits the simulation of stratified fluid phenomena
in which gravitationally unstable regions are present. The influence of subgrid scale turbulence
generation due to convective instability is parameterized by relating eddy viscosity coefficients
to the local Rayleigh number in unstable regions. The model is used to study three different
laboratory scale flow problems involving gravity wave generation, wave breaking, and
penetrative convection. The numerical solutions show good agreement with available ex-
perimental and analytic results as well as with a numerical solution obtained by other

investigators.

The importance of internal gravity waves in
the fluid dynamics of intermediate and meso-
scale geophysical phenomena has been recog-
nized for some time. The significance of such
waves is due in large part to their ability to
transfer momentum and heat to regions far
removed from their generation source. In the
case of orographically induced waves, Lilly
[1972] points out that wave drag can affect
the mean flow of the atmosphere at an alti-
tude that is far greater than the height of the
mountains producing the wave system. Like-
wise, there is evidence that strong penetrative
convection can generate internal waves of suf-
ficient strength to alter markedly the stably
stratified mean environment above the convec-
tive region. Remote sensing observations by
Gossard et al. [1970] and Hooke et al. [1972]
suggest that gravity waves play a major role
in the dynamics of the atmospheric boundary
layer during stable nocturnal conditions. Or-
lanski [1973] has recently pointed out that
the diurnal oscillation of atmospheric heating
will generate gravity waves of all scales up to
wavelengths of the order of 400 km.

In the present paper we will present a
method for numerically simulating internal
gravity wave phenomena. Crucial to such a
simulation is the method by which subgrid scale
processes resulting from gravitational instabil-
ity are modeled, since wave-breaking events are
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both probable and important in most finite
amplitude internal wave problems that are
suited to numerical simulation. Therefore in
the section on parameterization of subgrid
scale gravitational instability we will present a
scheme for paremeterizing the small-scale mix-
ing, which is generated owing to local gravita-
tional instability. Typically, such instability
may occur either dynamically, when an internal
wave exceeds a critical amplitude [Orlansk: and
Bryan, 1969], or thermodynamically, . because
of heating processes that act to reduce the
density of a parcel of fluid to a value below that
of the fluid parcel immediately above it. In the
parameterization that follows the instabilities,
which result from both dynamic and thermo-
dynamic processes, will be treated in the same
manner.

In the section on model description we will
describe the basic characteristics of the numer-
ical model, which has been used to produce
the computed solutions. Then, in the three sec-
tions following this one, numerical solutions for
different stratified fluid phenomena will be pre-
sented and compared with relevant numerical
and experimental results. Specifically, we will
treat three flow problems that are amenable to
laboratory experimentation: (1) the growth of
standing internal gravity waves in a rectangular
container because of the resonant forcing of a
paddle at the top of the container, (2) the col-
lapse of a region of uniform density embedded
in a stably stratified fluid, and (3) the pene-
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tration of an isolated buoyant element into a
stably stratified region and the generation of
internal waves due to its motion. Of these three
cases, only the last process is directly applicable
to phenomena encountered in the atmosphere
and ocean; however, all three are relevant to
geophysical fluid dynamics. Their simulations
are presented here to suggest what can be done
with the present model as adapted to meet the
needs of more specific geophysical processes in-
volving gravity waves and convective instabil-
ity.

Throughout this paper the variability of
either salinity or temperature will be envisaged
as the means by which density variations of the
water medium are produced. We will find it

convenient for the sake of exposition to use -

density and temperature interchangeably ac-
cording to the extent to which each is relevant
to the particular physical experiment being
discussed. Thus, for example, we will refer to

temperature variations in the rising bubble

experiment of the section on penetration of an
isolated thermal into a stably stratified fluid,
and we will consider variations of density or
salinity in discussing the collapse of a mixed
region in the section that precedes it.

PARAMETERIZATION OF SUBGRID SCALE
GRAVITATIONAL INSTABILITY

In order to simulate geophysical fluid dy-
namics problems through numerical integra-
- tion of the relevant flow equations the scientist
is often faced with the question of how to
represent energy sources and sinks due to proc-
esses having scales too small to be resolved by
the model. The most common method for treat-
ing these processes is to relate the subgrid eddy
fluxes to the local resolved flow properties in
accordance with the behavior of simple turbu-
lent flows. (The calculation of these eddy
fluxes using turbulence transport equations,
such as has been done by Daly and Harlow
[1970], Deardorff [1973], and others, seems to
be appropriate only for treating flows in which
horizontal and vertical scales are similar. The
application of such methods to most mesoscale
phenomena thus appears to be impractical.)
It was along these lines that Smagorinsky
[1963] obtained an expression for his general
circulation model in which the horizontal eddy
viscosity coefficient was taken to be propor-
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tional to the local deformation of the horizontal
velocity field. Formulations such as this that
relate the eddy coefficient magnitude to velocity
deformation alone reflect the behavior of turbu-
lence without density stratification and as such
are suitable only for neutrally stratified flows
or for flows such as those treated by Smagorin-
sky in which buoyancy effects do not affect the
turbulent transfer being modeled. However, it
is important to distinguish between turbulence
in a flow with completely neutral stratification
(i.e., a flow in which density is the same at each
point for all time) and turbulence in a flow in
which stratification is neutral in the mean (i.e.,
density is constant over the region when it is
averaged over an interval of space and time
but may involve large local fluctuations). In-
deed, neutral conditions in the atmosphere (as,
for example, might occur near the ground at
certain times of the day) must be classified in
the category where stratification is neutral in
the mean and as such will still involve local den-
sity fluctuations that require the inclusion of
buoyancy effects in their representation.

Very important differences exist in the nature
of turbulence generation between flows with
completely neutral stratification and flows in-
volving buoyancy effects. In completely neutral
flows the production of turbulence will be lim-
ited to local generation by shear instability
(Rayleigh instability) within the interior of the
fluid, by boundary effects such as surface rough-
ness along fluid boundaries, etc. In each case,
turbulence in fluid without buoyancy will be
largely confined to the vicinity of the point of
generation, advection providing the only means
by which the turbulence can be transported to
other parts of the fluid.

In stratified fluids (including fluids .that are
neutrally stratified in the mean), turbulence
generation can be attributed to a number of
different mechanisms, as, for example, shear
instability (modified by density stratification),
forced and free convection, critical layer ab-
sorption, and gravity wave interaction. The
number and diversity of such mechanisms for
local turbulence generation must certainly
strain the ability of the meteorologist to provide
a single parameterization capable of represent-
ing each mechanism for generating tubulence
locally.

However, stably stratified fluids allow for
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an additional mechanism, namely, internal grav-
ity wave propagation, which permits turbulence
to be generated at locations that are far re-
moved from the place where the waves were
first generated. Gravity waves are initially pro-
duced by mechanisms such as penetrative con-
vection, shear instability breakdown, orographic
effects, or any other energy input at the fluid
boundary. The waves so produced will then
propagate through regions of stable stratifica-
tion in the fluid until an abrupt change in the
wave energy occurs and turbulence is gener-
ated owing to wave breaking, interaction be-
tween gravity waves, or critical layer absorp-
tion.

The question concerning us in the present
section is how to model the subgrid eddy fluxes
that would occur in a stratified flow due to
turbulence generated by the many different
mechanisms discussed in previous paragraphs.
In this regard it is helpful to review several
important eddy diffusivity formulations that
have been devised in order to model turbulent
fluxes in stratified fluids.

In studying free convection in the lower
atmosphere, Priestley [1954] used dimensional
arguments to obtain an expression for eddy
diffusivity for free convection of the form

k. = (kA2)*(—g/086/32)"” Y]
where £ is an empirical constant and the rele-
vant length scale for subgrid turbulence has
been assumed here to be the vertical grid size
Az. Note that eddy viscosity has been assumed
here to be independent of molecular viscosity in
this turbulent atmospheric situation. More re-
cently, Lilly [1962] has extended Smagorin-
sky’s eddy viscosity formulation for a neutral
atmosphere to include density stratification.
The resulting expression for eddy viscosity v,
and eddy diffusivity «, thus includes a buoyancy
term, which is similar to that proposed by
Priestley and reduces to Smagorinsky’s form
when stratification is neutral:

1/2'
2907) )

R

where |D,| is the velocity deformation, the
quantities ¥ and y are empirical constants of
order unity, and «, and v, have been assumed

here to be equal (note that «, is set equal to
zero for y(g/9) (80/9z) > |D.[*).

m=wMﬁaP
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Lilly’s formulation seems to be reasonable in
the context of flows with weak stratification.
However, there does not seem to be conclusive
evidence at the present time to permit a gen-
eral parameterization of the role of deforma-
tion field in convective instability processes.
Indeed, some numerical experiments performed
by Lipps [1971] for convection with vertical
shear suggest that wind shear may reduce verti-
cal transport rather than increase it as is im-
plied by Lilly’s eddy viscosity model. In fact,
the great diversity of mechanisms that exist for
generating turbulence in stably and unstably
stratified flows (as were described earlier in
this section) suggests that no simple correlation
exists between turbulence generation and ve-
locity deformation in flows involving signif-
icant buoyancy effects. Because of the uncer-
tainties that still exist in our understanding of
the role of velocity shear in affecting the gen-
eral turbulence generation event in a stratified
fluid it would seem to be reasonable at the
moment to exclude velocity deformation de-
pendence from our parameterization of turbu-
lent fluxes. Thus, since all the fluids with which
we will be dealing here involve significant buoy-
ancy effects (including stratification that is
neutral in the mean), we have chosen only "
to increase eddy viscosity above molecular val- .
ues in the present laboratory studies (or above
background values in atmospheric models) for
local regions where density gradients become
gravitationally unstable. Such a choice of eddy
viscosity formulation is in keeping with our
interest in the growth, interaction, and breaking
of internal gravity waves; in addition, it is sup- -
ported by the suggestion of Orlanski and Bryan
[1969] and Orlanski [1971] that the breaking
of internal gravity waves by gravitational in-
stability may be a major mechanism for turbu-
lence generation in the deep ocean.

In fact, although only gravity wave over-
turning and convection processes are directly
parameterized by this gravitational instability
formulation, the assumed eddy viscosity will
still model turbulence generation due to shear
instability to the extent that such instability
is resolved by the numerical model. In unstable
conditions, convection processes will produce
turbulent eddy fluxes directly through the
formulation, whereas shear effects will alter this

. condition to the extent that they alter the im-
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posed density gradient in the convection region.
On the other hand, when the stratification is
stable or neutral in the mean, strong shear in
regions of low positive Richardson number will
produce local instability when conditions are
favorable. This instability will then grow until
local overturning occurs and thereby activates
the eddy viscosity in that region and damps
out further growth. The gravitational instabil-
ity condition thus serves to quench resolved
shear instability in stratified flows as well as
to model subgrid eddy fluxes produced by this
shear instability. Before describing the specific
eddy viscosity formulation to be used we will
briefly discuss the generation of turbulence due
to the wave-breaking process.

Previous studies [Orlanski and Bryan, 1969;
Orlanski, 1971, 1972] have been carried out in
order to describe better the wave-breaking proc-
ess and to relate it to the generation of
turbulence in the ocean and atmosphere. As
was described in these papers, the amplitude
of growing internal waves will be limited to
some critical value above which local unstable
density gradients will be produced. Because of
the high Rayleigh numbers that normally exist
in such geophysical situations as well as in the
laboratory cases considered here these density
anomalies will collapse in a turbulent manner,
thereby producing small-scale turbulence and
transforming wave energy into energy associated
with this turbulence. We will assume here that
the generation of turbulence due to this gravi-
tational instability is independent of the manner
in which the unstable density gradient was
produced. This decoupling of local instability
processes from the phenomena with larger scales
producing the instability greatly facilitates the
parameterization of subgrid scale mixing, since
we may then relate the amount of local turbu-
lence generation to local properties of the flow
field. In fact, we will treat the gravitational
instability process as an isolated event in space
and time, regardless of whether the unstable
density gradient occurring in the flow field was
the result of gravity wave breaking or local
heat transfer processes (such as free convection
occurring near the lower boundary of the
atmosphere because of solar heating).

It should be emphasized that we only wish
to parameterize instability processes that occur

in length scales smaller than the numerical ,
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grid size. Any gravitational instability that can
be resolved by the numerical grid resolution
will be assumed to be adequately reproduced by
the model. We will therefore seek to param-
eterize only the turbulence generation that may
occur within subgrid scale regions of the model.
We may visualize these regions as being equi-
valent to the grid boxes defined by adjacent
horizontal and vertical grid points.

When a grid-sized region of the computa-
tional field becomes unstable, we will assume
that turbulent mixing develops immediately and
that turbulent transport within the grid box
may be considered to be steady over the time
interval of one time step At of the numerical
model. This idealization of the convection pro-
cess amounts to an assumption that the time
required for the turbulent mixing process with-
in the box to adjust to a change in the local
unstable density gradient is much shorter than
the model time increment At.

As regards the parameterization of subgrid
scale quasi-steady convection in the model, two
different approaches will be considered here in
relating vertical heat (or density) flux to local
temperature (or density) gradient. As was
mentioned earlier, Priestley [1954] used di-
mensional analysis and the assumption that heat
flux is independent of molecular diffusion co-
efficients in atmospheric convection to infer
that heat flux depends on (—960/9z)*® and
thus that eddy diffusivity x, depends upon
(—980/82)"" as given by (1) above. On the
other hand, laboratory experiments [Silveston,
1958; Globe and Dropkin, 1959] and theo-
retical analysis [Kraichnan, 1962] concerning
free convection without wind at high Rayleigh
numbers show that nondimensional heat flux
in the form of Nusselt number Nu is propor-
tional to the Y5 power of Rayleigh number Ra
(and thus x, o< (—86/98z)* is implied) for a
given . Prandtl number. Ingersoll [1966] has
found experimentally that this result (as well
as the proportionality of nondimensional mo-
mentum flux to Ra"*) continues to be valid
in flows with weak velocity shear.

The differences between the two forms of
temperature gradient dependence should not
produce crucial differences in the behavior of
the parameterization (and in fact the use of the
two different formulations in some of the nu-
merical calculations presented later has been
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shown to produce qualitatively similar be-
havior). However, we feel that use of the
Rayleigh number formulation with the implied
dependence of convection fluxes on molecular
diffusion properties of the fluid is the more
appropriate of the two expressions in treating
the initially laminar laboratory studies to be
presented in the present paper. Also, in keep-
ing with Ingersoll’s results for convection with
weak shear and in lieu of empirical results
involving strong shear we will assume that

Nu = aRa'?® 3)

where « is taken equal to 0.1 (Ingersoll found
a = 0.08). Here we are defining the Nusselt
number Nu and the Rayleigh number Ra in
terms of properties in a grid box of dimensions
Az by Az:

JCAz
K()Ae (4)

where k, and v, are molecular diffusivity and
viscosity, respectively, g is the gravitational
acceleration, and A@ is the vertical unstable
temperature difference across the grid box. (In
flows involving moderate levels of turbulence it
is possible to use this same parameterization
but with the molecular values of «, and v, re-
placed by the constant background eddy diffusi-
vity values that are assumed for the viscosity
and diffusivity coefficients where density strati-
fication is stable. This procedure has been used
in studies of the planetary boundary layer by
Orlanski et al. [1973].) The total vertical heat
transport across the box is defined as

3¢ = ko(AO/A2) — (w'8’) (5)
Substituting (5) into the Nusselt number defi-
nition in (4), we may rewrite Nu as

Nu = 1+ (k./xo) (6)

where we have defined the eddy diffusivity «,
as

_ gABAZ
aKoVo

Nu =

_ _ (w'e)
K= = NpiAe (M
The empirical result (3) thus provides an ex-
pression for the eddy diffusivity due to sub-
grid turbulent convection when the tempera-
ture gradient is unstable. The total eddy diffus-
ivity k in a given grid box may then be calcu-
lated as follows:
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K=K+ K =K

K‘=‘K,+x0=xo(1+a(gA )Az)

A0<0

Ingersoll’s experiments show nondimensional
momentum flux to have a similar behavior to
the Nusselt number. Thus we will assume for
simplicity that eddy viscosity v, has the same
dependence on Rayleigh number as «,.

Finally, it is important to note that the
above eddy -coefficients can only be strictly
applied to vertical diffusion processes. In order
to incorporate this parameterization into the
numerical solution of the Navier-Stokes equa-
tions we must also include an expression for
horizontal eddy coefficients. Lacking other infor-
mation on which to base our model, we will
assume that in the laboratory flows to be
treated in this paper the horizontal and vertical
coefficients are equal, that is,

kg = — (W0)/0, = — (w'd')/0, =k, (9
Fully adequate treatment of horizontal diffusion
coefficients must await further studies of free
convection with horizontal temperature gradi-
ents. N

As can be seen from the above parameteriza-
tion, the present formulation of eddy diffusivity
and viscosity is highly selective in removing
energy at locations of gravity wave breaking
and free convection. We will demonstrate in
the solutions that follow that energy dissipation
is strongest in the high wave numbers; on the
other hand, low wave numbers are left virtually
unaffected until wave breaking occurs and modi-
fies the entire flow field. We are thus able to
calculate the development of a complex gravity
wave field up to and beyond the point at which
the waves exceed their critical amplitudes and
wave breaking occurs.

MobeL DESCRIPTION

The numerical model described below has
been designed to simulate the behavior of a
two-dimensional stratified fluid in a rectangular
container. In the examples treated in this paper

* the container has a rectangular cross section with

width L and height H and is filled with a lin-
early stratified fluid so that the initial density
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p = pd{l + Blz — (H/2)]}, where B < 0.
The fluid is incompressible with the Boussinesq
approximation assumed.

The condition of two dimensionality allows us
to formulate the Navier-Stokes equations in
terms of stream function ¢ and vorticity .
The resulting equations may be written as fol-
lows:

08" _ guryr vy 4 90F
at*_',('l/yg-)'*"ax*

+ 2 VYR (10)
a0*
5 = J*(*, 0*) _ _i_
+ ReP TV (11)
VHYE = * (12)

where variables have been nondimensionalized
by using the container height H as the length
scale and the inverse of the Brunt-Vaisala
frequency (N = (—gB)**) as the time scale.
Thus nondimensional variables (distinguished
here by asterisks) are related to their equivalent
dimensional variables as follows:

z* = z/H =2/H t* = (N
* — 2 * — g . P — Po
R N
v = v/y, k* = Kk/ko (13)

where x, and v, are the molecular or back-
ground values of heat or salinity and viscosity,
respectively.

The finite difference formulatlon of the above
equations is identical to the scheme used by
Lipps [1971] except for the method of solution
of the Poisson equation and the inclusion of
variable viscosity in the diffusion term. The
key aspects of the model will be described
briefly here; the reader is directed to Lipps’s
paper for more details of the method.

In order to reduce truncation error, flow
variables are specified over a staggered grid
throughout the field with ¢ and { defined at
points (IAz, JAz) in a Cartesian grid system
but with values of 6 specified at ([I —
1/2]Az, [/ — 1/2]Az). Spatial derivatives are
centered to achieve second-order accuracy. The

'(AL“‘) 2[K1+1.J(§'1+1.J -
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Jacobians of vorticity and temperature use the
Arakawa [1966] and Lilly [1965] formulations
0 as to avoid nonlinear instability.

Variable viscosity is incorporated into the
model in a straightforward manner. When ¢, ¢,
and € are assumed to be defined at the points
described above, the diffusion coefficients x and
v are defined at the point ([/ — 1/2]Az, JAz)
so as to facilitate the computation of (0. —
0:,), the difference Af in the eddy diffu-
sivity (8). For example, the simplest case
(9/0z) (k 8£/dx) has the finite difference form:

$r.0)
- KI.J(fI.J - ft—l.J)] (14)

The other diffusion terms may be placed in an
analogous form by the proper interpolation of
viscosity values.

Time differencing in (10) and (11) is achieved
by a centered or ‘leapfrog’ technique with the
solution timewise-smoothed every 30 time steps
to suppress time-splitting effects due to the leap-
frog time-marching procedure. Diffusion terms
are lagged one time step behind center in the
three-level time-differencing molecule in order to
improve numerical stability and to further in-
hibit time splitting.

To summarize the model description so far,
we have described the general characteristics of
the space and time differencing for (10) and (11)
enabling us to advance { and @ from time step
n to n 4+ 1. However, in order to advance the
solution to n + 2 we will require values for
stream function ¢ at n + 1. These are obtained
by using the newly calculated values of ¢ at
time step n + 1 in the solution of the Poisson
equation (12).

The method of solution of (12) uses a modifi-
cation of the noniterative algorithm employed by
Lipps [1971]. In the basic algorithm, the, use
of periodic boundary conditions in the z direc-
tion permits the representation of stream func-
tion and vorticity in terms of a Fourier series in
sines and cosines. Thus, for example, stream
function at the point (/Az, JAz) would be
written as

NM/2
ll/I'J = E l;ljl CcOoSs (ZTZ ALx)

i=o
NM/2-1
+- Z $ul sin (Z'n'l —I§x>

l=1
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where NM = L/Az. Substitution of this series
into the finite difference form of the Poisson
equation then leads to a set of linear equations
in J for each Fourier component ¥, !(k = 1, 2)
in terms of {. The solution of these sets of
equations by standard techniques [Richtymer
and Morton, 1967, pp. 198-201], as well as the
use of fast Fourier techniques to greatly reduce
computations, allows the solution of the Poisson
equation to be obtained directly and rapidly
without recourse to iterative techniques.

In the present model of fluid motion within
a container we have abandoned the use of
periodic boundary conditions in favor of im-
penetrable walls with velocity slip (no tangential
velocity shear) at = 0, L. Such boundary
conditions may be achieved by assuming ¢ =
¢ = 0 at the two side boundaries; these boundary
conditions have the additional advantage of
serving as a vertical axis of symmetry, since they
imply that the horizontal velocity component
u and the horizontal derivative of the vertical
velocity component w are zero along the bound-
ary. (As is discussed later, we always will assume
that 36/0z = 0 on side walls. These three condi-
tions thereby imply a symmetry boundary
condition.)

If such conditions as ¢ = { = 0 are imposed
at x = 0, L on the complete Fourier series rep-
resentation of ¢ and {, this imposition would
have the effect of forcing all cosine components
¥1," to be zero. In addition, the remaining sine
modes must be complete sine waves with the
largest possible horizontal wavelength equaling
L. In order to improve model resolution and to
permit the occurrence of waves of wavelength
2L we have thus changed the Fourier series to
include half-wave modes and neglect cosine
modes. Accordingly,

NM
Vi, = Z ‘plt sin (‘ﬂ'l I_A‘E)
’ =1~ - L
Such a representation allows sloshing of fluid
from side to side within the container when
the container and the computational region
coincide as in the section on resonant forcing of
standing internal gravity waves. In addition,
this formulation will permit us to use this model
directly to compute only half a flow field for
problems such as those treated in the two sec-
tions following it, in which the solution is

understood to be symmetric about the center

of the experimental tank.
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Further details regarding boundary condition
treatment will be given in the succeeding sec-
tions in which we will describe the modeling of
specific experiments.

REsoNANT FORCING OF STANDING INTERNAL
GraviTy WaAvES

Orlanski [1972] has studied the problem of
the growth of two-dimensional internal gravity
waves in a container of rectangular cross section.
In this problem, wave growth is driven by a
paddle located at the top of the container that
resonantly forces a free mode of the stratified
fluid. The gravity waves driven in this manner
can be made to increase in amplitude to the
point where wave breaking of the primary
mode occurs. ’

Orlanski was able to study this problem by
experimental, analytic, and numerical investiga-
tions, thereby providing several different ways
to describe the resonant wave growth process.
In the present section we will elaborate on this
earlier numerical simulation and also will in-
vestigate the effects on the numerical solution
of several different treatments of the diffusion
terms. However, before proceeding to a discus-
sion of the simulation results we will first de-
seribe the boundary conditions that were used
in this problem.

The boundary conditions used on the rigid
side and bottom walls of the container are
chosen so as to simulate free velocity slip as
well as an adiabatic heating condition. Thus we
require that
v=¢=06.=0 z=0,L
y=(=0.=0 2=0
The velocity slip condition { = 0 was chosen
in place of a no-slip condition in order to avoid
the formation of a viscous boundary layer along
the walls, because the coarseness of the grid
mesh would not permit a proper resolution of
such viscous boundary layers for the Reynolds
numbers presently used in the model.

Paddle forcing on the top boundary is repre-

sented by a boundary condition on stream func-
tion: '

Y(z, H, t) = f, sin wyt sin (2‘%5) (15)

with w, = 2m/7, where 7 is the period of the
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paddle forcing and equals 20N~ in this case.

This condition, as well as earlier conditions on
the side and bottom walls, is identical to the
boundary conditions used in the analytic per-
turbation solution of Orlanski [1972]. As a re-
sult we can expect the analytic and numerical
solutions to follow each other quite closely until
nonlinear effects in the numerical solution cause
the two solutions to diverge. This will in fact
be demonstrated in the comparisons that follow.

Finally, in order to complete the top wall
boundary condition we assume that

¢ =06/0z =0 z=H (16)

The approximate assumption that vorticity
vanishes at this boundary is motivated by the
fact that the stream function forcing amplitude
f, is very small in comparison with the resonant
growing stream function in the interior. In fact,
since forcing of the interior fluid is achieved by
imposing a prescribed small vertical motion
along the top boundary, this vertical motion
will interact with the predominantly horizontal
motion of the growing standing wave eddies
immediately below this boundary to produce
complex local motions that cannot be accurately
resolved by the grid resolution of the model.
As a result, shallow eddies develop within a
few grid points of the top boundary after some
five paddle periods. The use of various other
boundary conditions, including conditions that

use Orlanski’s first-order analytic solution with -

t(z, H, §) = —[(%)2‘4- (3—;[')2] Wz, H, 1)

did not correct this behavior. However, since
these vortices were always confined to the region
next to the top boundary and since the assumed
boundary conditions accurately produced the
desired interior forcing, we believe that this
unresolved boundary behavior has little effect
on the interior gravity wave development, which
is of primary interest to us here.

Three numerical solutions will be described
here, all three of which represent the same

physical situation but each involves a different

diffusive behavior. In the first treatment the
viscosity v and the salt diffusivity « are as-
sumed to be constant and equal to molecular
values for salty water with Re = N°H/v, =
2 X 10° and Pr = v,/k, = 500. Because the
present model resolution:of 120 points in the
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vertical and 32 points in the horizontal is too
coarse to simulate effectively diffusion effects for
such small diffusion coefficients, we expect that
this model will have only weak viscous effects,
and we thus will refer to the resulting solution
as the low-x selution for convenience of refer-
ence in the-discussion that follows. The second
solution is similar to the first in using constant
diffusion coefficients but with the Prandtl num-
ber reduced to Pr = 1; as a result, diffusivity
k is 500 times larger in this case than in the
previous case. We will refer to this solution
as the high-x solution. In the third and final
solution we use the eddy diffusivity formulation
as described in the section on parameterization
of subgrid scale gravitational instability. When
the density stratification is stable, the viscosity
and salt diffusivity are assumed to equal the
small constant values of the low-« solution. On
the other hand, when the density stratification
is unstable, the diffusion coefficients vary as
k(1 + aRa'?).

The analytic solution for the standing wave
problem is obtained by expanding the solution
in powers of the paddle forcing amplitude f,
(equation 15), which is assumed to be small:

v = ¥fot+ ‘szoz + O(fos)
0 = 0ifo + 0ofs" + 0(fo)

Substituting these power series into the inviscid
form of (10) and (11), we may then solve for
the first- and second-order solutions to- the initial
value problem in which ¢y = 6 = 0att = 0,
and the boundary conditions are the same as
those prescribed for the numerical models. The
resulting solution given by Orlanski [1972, pp.
582-583, equations 4.7 and 4.8] will be com-
pared with the numerical solutions in the anal-
ysis that follows.

Finally, experimental data was obtained by
Orlanski [1972] for the growth of the wave
displacement amplitudes as a function of time
in the standing wave configuration. Unfortu-
nately, the paddle forcing amplitude, as well as
the paddle geometry (two pivoting linear seg-
ments instead of the cosinusoidal shape assumed
in the theoretical models), does not match the
forcing function used in the theoretical models.
However, qualitative comparisons are still pos-
sible and will be made in the discussion that
follows.

(17)
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Fig. 1. Density contours at the time of max-
imum isopycnic displacement tN = 124. from the
standing wave solution with constant low diffusion
coefficient x. The graph at the top of the frame
shows the amplitude of the stream function forc-
ing along the top boundary.

Figures 1 and 2 show examples of the density
and stream function fields at an early stage in
the gravity wave growth. Figure 1 shows the
density field after six paddle periods at the
instant when the amplitude of the disturbance
in the lower portion of the container is maxi-
mum. The accompanying Figure 2 displays
stream function contours a quarter of a paddle
period after the density disturbance maximum,
at which time the stream function is maximum.
Because diffusion and nonlinear effects are small
in the solution at this time, the three numerical
solutions and the analytic solution all produce
results that are virtually identical to those shown
in the figures.

The maximum values of stream function and
temperature perturbation for each successive
half period of the paddle forcing provide us
with a valuable method for comparing the nu-
merical and analytic solutions. In Figure 3 we
have plotted the average of the bottom and
middle stream function maximums as a function
of time for the analytic solution and the three
numerical solutions. As for density we have
chosen to plot maximum isopycnic displacement
instead of maximum density perturbation, be-
cause the former quantity was measured by
Orlanski in his experimental investigation of
standing wave growth. By isopycnic displace-
ment we mean the following: Any given iso-
pycnic, designated here by I, has a maximum
height 2, and a minimuim height 2, above the
container bottom. If we form a sequence of
differences 8; = |2r — 2n| for consecutive
isopycnics, there will be local maximums in §,,

Fig. 2. Stream function contours from the
standing wave solution with constant low « at
the time tN = 130., when amplitudes are maxi-
mum.

for I = I* say, such that 8, > max (8p,
8r). It is these local maximums 8. that we call
maximum isopycnic displacements 8z. In Fig-
ure 4 we plot the averages of successive time
maximums of the maximum isopycnic displace-
ments for the middle and bottom modes of the
theoretical and experimental results. Isopycnic
displacement data were obtained by a computer-
ized form of the above algorithm for the nu-
merical and analytic results and by measure-
ment of dye line heights in tank photographs

 for the experimental results.

A study of Figures 3 and 4 reveals the time
span over which the analytic solution is valid

L
ANALYTIC
o5 NUMERICAL:
L - - low K
- iOH K
| mox - - EDDY VISCOSITY
NH2
010
005 |-
’f
L //
ol 1 “ R 1
0 100. ¢ 200. 300. 1

tN

Fig. 3. Graph of the magnitudes of nondimen-
sional stream function maximums versus nondi-
mensional time from the analytic and numerical
solutions. Stream function maximums represent
the average of the peak values occurring in the
bottom and middle eddies of the calculation field.
One period of the paddle forcing equals 20 N7
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Fig. 4. Graph of nondimensional maximum
isopycnic displacement versus nondimensional
time from analytic, numerical, and experimental
results. Analytic and experimental results are from
Orlansks [1972].

N

as well as show the points in the wave growth
process where larger diffusivity and major wave
breaking become important. Both figures show
the analytic and numerical solutions to give
virtually identical results for the first six paddle
. periods (tN = 0 — 120). Over this time we
expect the analytic solution, which is second-
order accurate, to represent any weak interaction
effects quite well. Likewise, density and velocity
gradients are sufficiently weak to preclude any
differences between the numerical solutions be-
cause of the different diffusion effects. However,
soon after T'N =120 the large x solution begins
to diverge from the other results, particularly
in the maximum stream function plot. Coinci-
dent with this divergence is the appearance in
this more diffusive solution of thickening regions
of constant density along the adiabatic top and
bottom walls. This apparently occurs because of
the large value of «, that rapidly diffuses the con-
stant density layers produced along the model
walls due to the boundary condition 86/9z = 0.
The growth of these constant 6 regions has
the effect of reducing the height of the stratified
fluid in the container, thereby altering the free
modes of the fluid and eliminating the resonant
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coupling between the paddle forcing and the
free mode being forced. :

In addition to this weakening of the paddle
forcing we can expect that the larger value of
« will have the effect of increasing the smoothing
of the density field, thereby impeding wave
growth. The use of high diffusivity therefore
produces unrealistic effects in the wave develop-
ment and in fact has been shown in this case
to prevent wave breaking from ever occurring.
On the other hand, the use of constant density
boundary conditions on the top and bottom
walls to prevent the formation of the constant
density region always led to unstable solutions
because of its apparent incompatibility with
the paddle forcing on-the top wall.

Around a time of six periods (tN = 120),
when the large « solution diverges, the curve of
maximum isopyenic displacement for the ana-
lytic solution begins to diverge from the re-
maining two numerical solutions. However, the
corresponding analytic curve for maximum
stream function is seen to remain close to the
two numerical solution curves until ten paddle
periods (¢tN = 200). This difference between
density and stream function results can be ex-
plained by the form of the analytic solution.
As Orlanski [1972] has pointed out and as can
be seen from equtions 4.7 and 4.8 of his paper,
nonlinear interaction does not appear in the
stream function solution until third order in
fo, whereas density shows a second-order inter-
action. Thus we would expect, and Figure 3
shows, that stream function is less sensitive than
density to nonlinear effects. Nonlinear inter-
action is shown by the figures to have the
effect of reducing the stream function growth
and increasing isopycnic displacement until
wave breaking occurs.

Finally, if we follow the growth of the low-«
and the eddy viscous solutions, we see that the
two solutions show quite similar results for
maximum stream function and isopycnic dis-,
placement over the duration of the comparison.
We may conclude from this similarity that eddy
viscosity effects have only a weak influence on
low wave number properties such as these. On
the other hand, small-scale overturning is filtered
very effectively by the eddy viscosity formula-
tion as is shown by the comparison in Figure 5
of the isopycnic fields at 18 paddle periods with-
out and with eddy viscosity. Similarly, the plot
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of the (6*) spectrum versus wave number in .

Figure 6 for the eddy viscosity case shows the
tendency for high wave number energy to satu-
rate as time increases.

Regarding the small differences between the
low-k and the eddy viscosity results in Figures
3 and 4, we should note that the initial diver-
gence of the curves at around 11 periods (tN =
220) occurs about three periods prior to the
first large-scale breaking event in the top of the
container. This divergence can be explained
by the occurrence of small-scale overturning
in the upper region at this early time. Large
differences between the solutions do occur at
around 14 periods (tN = 280) with large-scale
breaking in the top and at 16 periods (tN =
320) in Figure 4 when breaking in the bottom
first appears.

Experimental isopycnic displacement data is
also plotted in Figure 4. As was mentioned
earlier, we have not attempted to match the
paddle forcing amplitude in the theoretical solu-
tions with that used in the physical experiment.

— T ——n

Fig. 5. Comparison of density contour plots
at time tN = 356. from standing wave solutions
with (a) constant low diffusion coefficient x and
(b) eddy diffusion coefficients as described in the
section on parameterization of subgrid scale gravi-
tational instability.
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Wave Number L/,

Fig. 6. Graph showing the spectrum of ef-
fective perturbed energy (#*?) versus wave num-
ber L/\.. The quantity (6*%) is averaged over five
equidistant levels in z over the tank height with
this quantity then averaged over one paddle pe-
riod. The nondimensional time corresponding to

-~ each curve is given to the right of that curve.

We can, however, note the qualitative similari-
ties between the numerical solution with eddy
viscosity and the experimental results. In par-
ticular, the numerical displacement curve is
seen to flatten out soon after wave breaking

‘occurs at around 14 periods (tN = 280), just

as the experimental curve flattens after wave
breaking at approximately 10 periods (tN =
200).

The numerical solution with eddy viscosity
differs from the other two numerical solutions
in that it was perturbed by a random distur-
bance over the entire density field every half
period beginning at 4.5 paddle periods. The
maximum amplitude of this disturbance, which
was less than 0.019% of the density difference
BH between the top and bottom of the tank,
was so small as to leave the mean solution
properties unaffected. However, the random
disturbance will excite asymmetric modes in the
solution. (If such asymmetric modes were not
introduced into the model in this manner, the
numerical solution would remain perfectly sym-
metric for the entire calculation.)
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Fig. 7. Plots of stream function contours from
the standing wave solution with eddy viscosity
and with small random perturbations imposed
every half period begining at ¢tN = 90. The three
cases shown correspond to times when stream
function is maximum in time at some point within
the field.

During the early stages of the solution prior
to wave breaking, no asymmetry is evident in
the solution. However, as density gradients
steepen prior to the occurrence of wave break-
ing, the density field becomes more susceptible
to the small magnitude disturbances, and slight
asymmetries begin to appear. The isopycnics in
Figure 5 show evidence of this asymmetry,
whereas the stream function plot in Figure 7a
at 15V periods shows a more pronounced effect
in the region where stream function gradients
are small.

The quality of the numerical solution can be
expected to deteriorate after 18 periods as the
amount of energy in the small scale increases.
However, the use of the present eddy viscosity
serves to dissipate much of this energy and
allows us to follow the further growth of the

8819

solution asymmetries. Figure 7(b and c), show-
ing stream function fields at 19 and 20% pe-
riods, reveals the existence of a horizontal wave
number L/A, = V5, where previously the lowest
wave number, the forcing function wave number,
L/\. = 1.

The formation of a half wave number mode
was observed experimentally by Orlanski [1972]
by means of time-lapse photography of the cir-
culation of neutrally buoyant particles in the
stratified wave tank after wave breaking oc-
curred (Figure 8a). An analogous field of tra-
jectories has been obtained for the numerical
solution by calculating the trajectories of tracers
that are advected by the time-varying numerical
solution. One such trdjectory field, obtained
from the numerical solution at 22%% paddle
periods, is displayed in Figure 8b below the
experimental photograph and shows the great
similarity that exists between the numerical
and the experimental flow fields. (Compare also
the similarity in low wave number development
between the stream function plots of Figure 7
and the successive trajectory photographs of
Orlanski [1972, Figure 14, Plate 5]).

Fig. 8. (a) Time-lapse photograph of trajetor-
ies of neutrally buoyant particles in the lower part
of an experimental tank in the standing wave
experiment of Orlanski [1972] (tN = 561.). (b)
Similar trajectory plot obtained from the numeri-
cal solution with eddy viscosity at tN = 450.
The two trajectory fields show the shapes of the
asymmetric flow fields to be quite similar.
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CoLLAPSE OF A M1xEDp REGION IN A
StraTIFIED FLUID

A number of other stratified fluid experiments
can be simulated by using the present two-
dimensional model with rectangular tank geom-
etry. The two cases described in this and the
next section involve the generation of traveling
internal gravity waves caused by the transient
deformation and motion of a nearly homogeneous
bubble immersed in the stratified fluid. In each
of the two calculations the fluid motion and the
density field in the tank are assumed to be sym-
metric about a vertical center line passing down
the middle of the tank. The numerical calcula-
tions will thus be carried out only for the right
half of the tank with the left and right bound-
aries of the calculation field corresponding to the
center line of the tank and right wall, respec-
tively. The actualtank will be considered to
have a width L that is 4 times its height H.

In this section we will discuss the simulation
of the collapse of a two-dimensional mixed re-
gion immersed in a stratified fluid. Such a simu-
lation provides us with an opportunity for com-
paring solutions from our numerical model with

experimental as well as other numerical results.

Wu [1969] has performed an experiment to
study the internal wave generation due to the
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collapse of a mixed region, such as would be
generated by large eddies in the ocean. In this
experiment, Wu enclosed a fluid of uniform
density in a half-cylindrical container mounted
on the left side wall of a rectangular tank of
fluid having a stable density stratification. (As
in our numerical model, Wu chose an experi-
mental configuration that represents only the
right half of the tank, which would be required
if the mixed region were placed in the center
of the fluid.) At time ¢ = 0 the container en-
closing the mixed fluid is removed, and the uni-
form fluid, which has no net buoyancy in the
stratified fluid, begins to collapse. Internal waves
generated by the deforming fluid element radi-
ate away from the element as the mixed region
collapses. The inclination and the horizontal
position of the wave rays change with time as
the shape of the element changes and the wave
fronts propagate. Wu determined ‘the inclina-
tion and hotizontal position (relative to the top
of the uncollapsed mixed region) of these rays
by marking the wave crests and troughs as ob-
served from fluid dye lines in successive ciné
photographs of the tank. The dots in Figure 9
show Wu's results for the ray inclination to
the horizontal plotted against the ratio z/R.
The = is the horizontal distance from the center

90
o B FHEAL [

BERE—— p——y——ha —

70+ .

RAY INCLINATION (DEGREES)
>
.

oL ok !

L 2 3

%

Fig. 9. Graph showing the inclination of gravity wave rays to the horizontal versus non-
dimensional distance z/R as obtained from experimental and numerical results for the
collapse of a mixed region. The length z is the horizontal distance from the center line at
which a ray intersects the horizontal line marking the initial height of the top of the mixed
region prior to its collaspse; R is the initial radius of this mixed region. Data are shown from

the experimental results of Wu [1969] (dots),

from the numerical solution by Young and

Hirt [1972] (triangles), and from the present numerical solution (squares).
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line to the point at which the ray crosses the
level of the top of the undisturbed mixed region.
The R is the initial radius of the mixed region
at time t = 0.

The present model has been adapted to the
problem of the collapsing mixed region by re-
placing the stream function forcing at the top
boundary by a rigid lid and by introducing the
half circle of uniform density fluid along the
left boundary of the field at time ¢ = 0. The
eddy viscosity term used previously has been
included in the present calculation but causes
virtually no change in the numerical solution.
(Maximum changes were less than 2% in vor-
ticity and perturbation density). This is rea-
sonable, sirice the only significant overturning
that may appear in the field should occur above
the mixed region ds the fluid first collapses, and
this overturning appears to be quite' weak.

Comparison is made in Figure 9 of the ray
“inclination results obtained from our numerical
solution, from the experimental results of Wu,
and from the numerical solution of Young and
Hirt [1972]. The latter numerical solution was
obtained with a marker-and-cell model that is

quite similar to the present model but that in-

volves the primitive -equations instead of the

¢
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(a) Plot of density contours at time

Fig. 10.
tN = 15. during mixed region collapse, and (b)
the corresponding plot of perturbation density
contours.
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vorticity formulation employed here. As the
figure shows, both numerical solutions give data
within the range of scatter of the experimental
data.

The locations of wave crests and troughs ob-
tained from our numerical model for use in the
data of Figure 9 were deterinined from plots of
perturbation density such as that shown in
Figure 10b. The crests and troughs shown in
Figure 10a do not correspond to the apparent
axes of the tongues of maximum and minimum
perturbation density, respectively; rather the
loci of the points of greatest and least height
along each line of constant perturbation density
represent the crests and troughs in the corre-
sponding plot of isopycnics. By using these
perturbation contour plots we are able to iden-
tify effective crests at inclinations up to 88°
near z = 0, as shown in Figure 9.

PENETRATION OF AN ISOLATED THERMAL INTO A
STABLY STRATIFIED FLUID

An interesting geophysical phenomenon that
is amenable to the stratified tank configuration
is the rising of a buoyant fluid element in a
stably stratified environment and the ensuing
generation of internal gravity waves as the
bubble oscillates and collapses at its neutrally
buoyant height. The magnitude of the gravity
wave field generated by such bubble penetra-
tion provides us with insight into the magnitude
of gravity waves generated in the atmosphere
by isolated thermals and cumulus clouds.

As in the previous collapsing bubble simula-
tion the present calculation will employ a sym-
metry condition on the left boundary with only
half the flow field calculated by the model. The
configuration will use slip boundaries on the
right side, top, and bottom boundaries to simu-
late an experiment carried out with a bubble
rising in the center of a tank with a length L
equal to 4 times its height H. The model is
two-dimensional, so that we will be modeling
the rise of a line thermal instead of the more
common axnsymmetrlc buoyant element. The
buoyant element is generated by prescribing the
temperature by Gaussian functions in t and z
along the bottom boundary as follows:

2
* = _ " _ __i_)
6*(z, 0, t) 0.50(1 exp{ (1.2H ;

(o527
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where the initial stratification in the interior
varies linearly as 6, = —0.5 + z/H. The am-
plitude of the Gaussian temperature distribu-
tion changes from 0.94 times its maximum at
tN = 0 to its maximum value at tN = 10.
The peak temperature at £ = 0 at this latter
time is equal to the ambient temperature at
z/H = 0.5. Following this maximum the bound-
ary temperature decays to the initial ambient
value .*(z = 0) = —0.5. In this way we
simulate the generation of an isolated thermal
by a transient localized temperature maximum
occurring on the bottom boundary of a labora-
tory tank.

The method of parameterization of eddy vis-
cosity is critical to the successful simulation of
gravity wave generation by penetrative con-
vection. The use of an eddy viscosity coefficient,
which is far larger than the molecular viscosity
of water, is necessary in order to parameterize
the turbulent mixing present as the bubble rises
and dissipates. However, the use of a constant
coefficient has been shown by numerical experi-
ment to be unsatisfactory in the present prob-
lem because the large viscosity required not
only retards the bubble motion but also damps

out oscillations in the stable region above the

bubble, thereby preventing the generation of
internal gravity waves. On the other hand, the
use of an eddy viscosity formulation, which is
proportional to the local magnitude of the un-
stable temperature gradient, provides a large
viscosity in the turbulent bubble region, whereas
it imposes nearly inviscid conditions in the stable
gravity wave field above the mixed lower layer
(with the exception of the regions where gravity
wave breaking occurs). The eddy viscosity as
formulated in the section on parameterization of
subgrid scale gravitational instability is there-
fore well suited to penetrative convection proc-
esses and will be used in the numerical solution
of the present problem.

Figure 11 shows the sequence of isotherm
fields with the creation and decay of the bubble
and with the resulting generation of internal
waves in the stable fluid above. Below each
contour plot is a graph showing the current
temperature distribution occurring along the
bottom boundary of the field. The first frame
shows the early effects of bottom heating as the
Gaussian temperature function first grows. As
the heated fluid rises further, it ‘necks down’
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to form a circular cap (tN = 10.) with the
influence of the line vortex below and to the
right of the cap shown by the tongue of cooler

“fluid curving behind the cap in a manner similar

to that described by Woodward [1959]. The
topmost portion of the cap reaches its peak
penetration z/H = 0.63 at tN = 14. soon after
the time tN = 10. of maximum temperature at
the bottom boundary. Since the peak tempera-
ture imposed at the bottom boundary corre-
sponds to the ambient temperature at the height
2/H = 0.5, the buoyant cap has clearly over-
shot its neutral height and must fall back.

At time tN = 14. the bubble has achieved
its maximum height. The remnant of cooler

TEMPERATURE
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Fig. 11. Sequence of temperature contour plots
during the rise and collapse of the buoyant bub-
ble. Graphs showing the amplitude of the im-
posed temperature forcing along the bottom
boundary of the field are given below each frame.
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fluid seen as a closed contour below- the limb of
the cap was drawn into the bubble by the clock-
wise vortex during the rise of the bubble. Now
with the upward motion stopped the sense of
the vorticity under the limb has reversed, and
the fluid under the cap is beginning to spread
downward and away from the center line.

A more detailed picture of the vertical motion
of the bubble can be obtained from Figure 12,
in which the heights along the center line 2 = 0
of the two isotherms 6* equal to —0.05 and
0.05 (initially at z/H = 0.45 and 0.55, respec-
tively, in the undisturbed field) are plotted
against time. Both of these isotherms are located
in the interface above the buoyant cap at time
tN = 15. in Figure 11, Their motion should
thus correspond roughly to the motion of the
bubble as it first rises and falls back. The heavy
dashed line sketched into Figure 12 gives the
position of the interface if the small oscillations
above the bubble are removed. The erratic
motion of the isotherms after tN = 25 is repre-
sentative of the violent mixing that occurs
following the descent of the bubble.

Returning to the sequence of Figure 11, we
note the rapid sinking of the buoyant cap at
tN = 22.5 and the swift spreading of the warmer
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Fig. 12. Graph showing the nondimensional
height along the center line of two isotherms
6* — 0.05 (solid line) and 6* = —0.05 (light dashed
line) versus time. Both isotherms are located
within the interface above the bubble during its
initial rise. The heavy dashed line designates the
approximate trajectory of the interface if high-
frequency buoyancy oscillations are neglected.
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fluid from the collapsing bubble into the strati-
fied region to the right. The outward motion
is sufficiently violent to produce the overturning
shown in the center of frame tN = 25. The
subsequent contour plots in Figure 11 show a
greatly reduced mixing with the stratification
in the lower half of the field now reduced to one
fourth of its initial value.

Up to this point the discussion has concen-
trated on the motion of the bubble and the
resulting mixing in the lower half of the field.
However, another matter of great interest is the
determination of the extent to which the motion
of a thermal can generate internal gravity waves
in the stably stratified fluid above it. Although
the results of the present calculation are of
limited generality because of the influence of
the tank boundaries on the internal wave devel-
opment, they still can provide an indication of
the length scales and the amplitudes of the
internal wave field that can be generated by a
bubble of the magnitude considered here.

The temperature contours in Figure 11 show
internal gravity waves in the upper half of the
field as the bubble rises and begins to sink.
It is difficult to discern details of the internal
wave field from these contour plots. Therefore
in order to show more clearly the amplitude
and period of the wave field we have plotted in
Figure 13 a time history of the temperature
perturbations at various horizontal positions
across the calculation field and for three heights
within the stratified region above the bubble.
The bubble in fact penetrates one of these height
levels as shown by the large drop in tempera-
ture around the time tN = 11. at the point
z/L = 0. and z/H = 0.56. Oscillations also
occur soon after tN = 10. at all other stations
but only become strong after tN = 15. as the
bubble begins to drop. At tN = 30 the tongue
of fluid spreading from the collapsing bubble
protrudes up into the stable layer (see Figure
11, tN = 225, 25., 30.) in the center of the
field at station z/L = 0.26 to set off a second
disturbance generating large amplitude internal
waves. A survey of the time traces in the figure
shows wave frequencies in this field ranging
between 0.6N (lower frequencies are present in
the figure but are difficult to identify because
of the transience of the phenomena and the
shortness of the observation period) and N,
oscillations of 0.8N being most pronounced.
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Fig. 13. Graphs showing temperature perturbatioﬁs versus time at three different heights
for four horizontal positions. All points are located within the upper stable region in which
gravity waves are generated by the penetration of the bubble.

Oscillations close to the Brunt-Vaisala fre-
quency are localized to the region immediately
above locations of strong forcing, namely, the
regions above the penetrating bubble at tN =
10 (note the oscillations of isotherms in Figure
12 at this time) and above the penetrating
tongue of fluid in the center of the tank at
tN = 30. The frequencies around 0.8N as well
as the lower frequencies observed represent
gravity waves excited by lower harmonics of the
initial penetration of the bubble into the stable
layer as well as by the later interaction of the
stable layer and the mixed layer below.

The dominant horizontal wavelengths of the
gravity wave field can be seen from the power
spectrum in Figure 14 of squared temperature
perturbation averaged over the time interval
tN = 25-50 after the bubble has collapsed. The
wavelengths A, equal L and L/2 are seen to
predominate even though the bubble scale is
approximately L/4 (as shown in Figure 14 by
the peak in the mean-squared spectrum of per-
turbation height 2’/H of an isotherm within
the bubble interface at maximum bubble pene-
tration). At first sight this energy accumulation
in tank-sized scales would appear to be due only
to the influence of tank boundaries on the de-
veloping wave field. However, further analysis
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Fig. 14. Graph showing the spectrum of the
mean square of the nondimensional perturbation
temperature ((¢’/A8)*) averagsd over three heights
in the gravity wave field above the collapsing
bubble and averaged over the time interval tN
from 25. to 50.; also the mean square of the non-
dimensional perturbation height ((#/H)? for the
isotherm ¢* = 0.05 located in the bubble interface
and taken at the time ¢tN = 15., when bubble
penetration is maximum.
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can be made of the coupling between the motion
of the sharp interface formed above the bubble
(where this interface motion can be approxi-
mately described by the motion of the interface
above a homogeneous fluid) and the motion of
the stratified fluid above. This simple model
suggests that only interfacial waves with wave-
lengths several times the size of the bubble will
“have a frequency that is less than the Brunt-
Vaisala frequency of the stable region above.
Hence we would expect that these larger scales
will predominate over bubble-sized scales in
supplying energy to the gravity wave field.

Finally, it is of particular interest for us to
determine the amount of energy from the buoy-
ant bubble that has gone into the gravity wave
field above the mixed layer. A comparison of the
perturbation potential energy (6”) in the gravity
wave field with the square of the change in
mean temperature ((§) — (0,))* averaged over
the entire tank shows that energy in the gravity
wave field is 12% of the change in mean poten-
tial energy in the tank owing to the bubble gen-
eration and collapse. Although no general con-
clusions can be drawn from this single study,
such an energy partition suggests that more
attention should be directed to gravity wave
generation as a significant element in the energy
budget of penetrative convection processes in
the atmosphere.

SuMmMARY AND CONCLUSIONS

We have described here a finite difference
model for stratified fluids and have demon-
strated its use in the simulation of a variety of
different flow phenomena in which the genera-
tion, growth, and overturning of internal gravity
waves occur. The modeling of wave breaking as
well as other forms of convective instability in
these simulations is made possible through an
approximate parameterization of the subgrid
turbulence generation resulting from gravita-
tional instability. In this formulation the local
magnitude of eddy viscosity, and thereby the
turbulent mixing, within unstable regions is
assumed to be a function only of the gravita-
tional instability as expressed by the local Ray-
leigh number. The effect of velocity shear, such

as might occur during wave breaking, is assumed

to be of only secondary 1mportance and is there-
fore neglected.
Numerical solutions were carrled out for three
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different flow problems that are identifiable with
possible laboratory experiments in a stratified
water tank. In the first case the model was used
to produce a solution for resonant forcing of
standing internal gravity waves that compares
favorably with the experimental and analytic
results of Orlanski [1972] over the duration of
wave development as well as the period follow-
ing initial wave breaking. The numerical solu-
tion for the collapse of a mixed region showed
quantitative agreement with data from experi-
ment as well as from another numerical model.
Finally, the numerical model was used to study
the penetration of an isolated two-dimensional
thermal into the stably stratified fluid in a
water tank and demonstrated that the emergy
associated with the gravity wave field produced
by this penetration represented a significant
fraction of the change in the mean potential
energy produced by the creation of the thermal.

We have thus demonstrated that the present
finite difference model in conjunction with the
parameterization of subgrid scale turbulence
generation provides an effective tool for study-
ing stratified fluid phenomena in which stably
stratified regions with laminar flow or with flow
having only moderate turbulence levels are in-
terspersed with regions of high mixing rates
caused by convective instability. Many meso-
scale and intermediate scale geophysical flows
will consist of such a mixture of gravitationally
stable and unstable regions. The proper inter-
action of these regions and the correct repre-
sentation of gravity wave generation sources
such as the penetrative convection mechanism
treated in the preceding section are important
phenomena that should be present in any nu-
merical model of atmospheric or oceanic meso-
scale flow.

However, in order to extend the model to
more relevant geophysical problems one must
recognize the weakness of using our assumption
of equality between vertical and horizontal eddy
diffusion coefficients for mesoscale flows; for,
although this assumption appears to be reason-
able for laboratory scale models in which ver-

»tlcal and- horizontal motions are of the same

‘order of . magmtude, it will be less-valid for
mesoscale geophysical ‘problems in “which the
ratio~of horizontal to vertical eddy scales is
much greater than unity. A. more realistic rela-

tlonshlp between honzontal and vertical dlffus-
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sion coefficients should thus be developed in
order to account for the differences in the
corresponding eddy scales.

- We are now in the process of transforming
the model into a form that is suitable for the
study of mesoscale atmospheric phenomena. Pre-
liminary results from a city scale version show
good agreement of solution characteristics, such
as planetary boundary layer thickness, with
observational results. Details of this model will
be presented in a forthcoming paper.

A film showing the growth and breaking of
standing interrial gravity waves has been de-
veloped by the authors using the present numeri-
cal model as well as laboratory experiments and
is available from the authors upon request. -
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